Sunday, 30 June 2013

Basics of Online Web Research, Web Mining & Data Extraction Services

The evolution of the World Wide Web and Search engines has brought the abundant and ever growing pile of data and information on our finger tips. It has now become a popular and important resource for doing information research and analysis.

Today, Web research services are becoming more and more complicated. It involves various factors such as business intelligence and web interaction to deliver desired results.

Web Researchers can retrieve web data using search engines (keyword queries) or browsing specific web resources. However, these methods are not effective. Keyword search gives a large chunk of irrelevant data. Since each webpage contains several outbound links it is difficult to extract data by browsing too.

Web mining is classified into web content mining, web usage mining and web structure mining. Content mining focuses on the search and retrieval of information from web. Usage mining extract and analyzes user behavior. Structure mining deals with the structure of hyperlinks.

Web mining services can be divided into three subtasks:

Information Retrieval (IR): The purpose of this subtask is to automatically find all relevant information and filter out irrelevant ones. It uses various Search engines such as Google, Yahoo, MSN, etc and other resources to find the required information.

Generalization: The goal of this subtask is to explore users' interest using data extraction methods such as clustering and association rules. Since web data are dynamic and inaccurate, it is difficult to apply traditional data mining techniques directly on the raw data.

Data Validation (DV): It tries to uncover knowledge from the data provided by former tasks. Researcher can test various models, simulate them and finally validate given web information for consistency.



Source: http://ezinearticles.com/?Basics-of-Online-Web-Research,-Web-Mining-and-Data-Extraction-Services&id=4511101

Friday, 28 June 2013

What You Should Know About Data Mining

Often called data or knowledge discovery, data mining is the process of analyzing data from various perspectives and summarizing it into useful information to help beef up revenue or cut costs. Data mining software is among the many analytical tools used to analyze data. It allows categorizing of data and shows a summary of the relationships identified. From a technical perspective, it is finding patterns or correlations among fields in large relational databases. Find out how data mining works and its innovations, what technological infrastructures are needed, and what tools like phone number validation can do.

Data mining may be a relatively new term, but it uses old technology. For instance, companies have made use of computers to sift through supermarket scanner data - volumes of them - and analyze years' worth of market research. These kinds of analyses help define the frequency of customer shopping, how many items are usually bought, and other information that will help the establishment increase revenue. These days, however, what makes this easy and more cost-effective are disk storage, statistical software, and computer processing power.

Data mining is mainly used by companies who want to maintain a strong customer focus, whether they're engaged in retail, finance, marketing, or communications. It enables companies to determine the different relationships among varying factors, including staffing, pricing, product positioning, market competition, and social demographics.

Data mining software, for example, vary in types: statistical, machine learning, and neural networks. It seeks any of the four types of relationships: classes (stored data is used for locating data in predetermined groups), clusters (data are grouped according to logical relationships or consumer preferences), associations (data is mined to identify associations), and sequential patterns (data is mined to estimate behavioral trends and patterns). There are different levels of analysis, including artificial neural networks, genetic algorithms, decision trees, nearest neighbor method, rule induction, and data visualization.

In today's world, data mining applications are available on all size systems from client/server, mainframe, and PC platforms. When it comes to enterprise-wide applications, the size usually ranges from 10 gigabytes to more than 11 terabytes. The two important technological drivers are the size of the database and query complexity. A more powerful system is required with more data being processed and maintained, and with more complex and greater queries.

Programmable XML web services like phone number validation will assist your company in improving the quality of your data needed for data mining. Used to validate phone numbers, a phone number validation service allows you to improve the quality of your contact database by eliminating invalid telephone numbers at the point of entry. Upon verification, phone number and other customer information can work wonders for your business and its constant improvement.



Source: http://ezinearticles.com/?What-You-Should-Know-About-Data-Mining&id=6916646

Wednesday, 26 June 2013

Data Recovery Services - When You're Facing A Wipeout

Your computer files are the foundation of your business. What if one day you awaken to find that your computer has crashed, and the foundation of you business appears to have crumbled? Are those files nothing but dust on the winds of cyberspace? Or is there a way to gather up their bits and bytes, reassemble them, and lay the bricks of a new foundation?

There very well may be, but it requires the skilled handling of one of the many data recovery services which have come to the rescue of more computer-driven businesses than you might believe. And they have not retrieved data only for small business proprietors; data recovery services have been the saving of many a multi-million dollar operation or project. Data recovery services have also practiced good citizenship in recovering data erased from the hard drives of undesirables.

Finding Data Recovery Services

If you're someone who neglected, or never learned how, to back up your hard drive, it's time to call for help from one of the data recover service by doing an online search and finding one, if possible, nearby. If you have to settle for one of the data recovery services I another area, so be it. You're not in a position to quibble, are you?

You'll need to extract your non-functioning hard drive from your PC and send it out to have data recovery services administered. Whichever of the data recovery services company you have chosen will examine you hard drive's memory to determine how much of the data on it can be restored, and give you an estimate of the job's cost.

Only you are the expert on the importance of that data to your future, and only you can decide whether or not the price quoted by the data recovery services company is acceptable. If you think you can find a way to work around the lost data, simply tell the data recovery services company to return your hard drive.

What You'll Get For Your Money

But before you do that, consider exactly what the data recovery services will entail, and why they are not cheap. Your mangled hard drive will be taken to a clean room absolutely free of dust, and operated on with tools of surgical precision so that even the tiniest bits of functional data can be retrieved.

If their price still seems too high, ask the data recovery services company what their policy is if they find that they are unable to retrieve a meaningful amount of data. Many of them will not charge you if they cannot help your situation.


Source: http://ezinearticles.com/?Data-Recovery-Services---When-Youre-Facing-A-Wipeout&id=615548

Monday, 24 June 2013

Importance of Data Mining Services in Business

Data mining is used in re-establishment of hidden information of the data of the algorithms. It helps to extract the useful information starting from the data, which can be useful to make practical interpretations for the decision making.
It can be technically defined as automated extraction of hidden information of great databases for the predictive analysis. In other words, it is the retrieval of useful information from large masses of data, which is also presented in an analyzed form for specific decision-making. Although data mining is a relatively new term, the technology is not. It is thus also known as Knowledge discovery in databases since it grip searching for implied information in large databases.
It is primarily used today by companies with a strong customer focus - retail, financial, communication and marketing organizations. It is having lot of importance because of its huge applicability. It is being used increasingly in business applications for understanding and then predicting valuable data, like consumer buying actions and buying tendency, profiles of customers, industry analysis, etc. It is used in several applications like market research, consumer behavior, direct marketing, bioinformatics, genetics, text analysis, e-commerce, customer relationship management and financial services.

However, the use of some advanced technologies makes it a decision making tool as well. It is used in market research, industry research and for competitor analysis. It has applications in major industries like direct marketing, e-commerce, customer relationship management, scientific tests, genetics, financial services and utilities.

Data mining consists of major elements:

    Extract and load operation data onto the data store system.
    Store and manage the data in a multidimensional database system.
    Provide data access to business analysts and information technology professionals.
    Analyze the data by application software.
    Present the data in a useful format, such as a graph or table.

The use of data mining in business makes the data more related in application. There are several kinds of data mining: text mining, web mining, relational databases, graphic data mining, audio mining and video mining, which are all used in business intelligence applications. Data mining software is used to analyze consumer data and trends in banking as well as many other industries.



Source: http://ezinearticles.com/?Importance-of-Data-Mining-Services-in-Business&id=2601221

Friday, 21 June 2013

How Web Data Extraction Services Will Save Your Time and Money by Automatic Data Collection

Data scrape is the process of extracting data from web by using software program from proven website only. Extracted data any one can use for any purposes as per the desires in various industries as the web having every important data of the world. We provide best of the web data extracting software. We have the expertise and one of kind knowledge in web data extraction, image scrapping, screen scrapping, email extract services, data mining, web grabbing.

Who can use Data Scraping Services?

Data scraping and extraction services can be used by any organization, company, or any firm who would like to have a data from particular industry, data of targeted customer, particular company, or anything which is available on net like data of email id, website name, search term or anything which is available on web. Most of time a marketing company like to use data scraping and data extraction services to do marketing for a particular product in certain industry and to reach the targeted customer for example if X company like to contact a restaurant of California city, so our software can extract the data of restaurant of California city and a marketing company can use this data to market their restaurant kind of product. MLM and Network marketing company also use data extraction and data scrapping services to to find a new customer by extracting data of certain prospective customer and can contact customer by telephone, sending a postcard, email marketing, and this way they build their huge network and build large group for their own product and company.

We helped many companies to find particular data as per their need for example.

Web Data Extraction

Web pages are built using text-based mark-up languages (HTML and XHTML), and frequently contain a wealth of useful data in text form. However, most web pages are designed for human end-users and not for ease of automated use. Because of this, tool kits that scrape web content were created. A web scraper is an API to extract data from a web site. We help you to create a kind of API which helps you to scrape data as per your need. We provide quality and affordable web Data Extraction application

Data Collection

Normally, data transfer between programs is accomplished using info structures suited for automated processing by computers, not people. Such interchange formats and protocols are typically rigidly structured, well-documented, easily parsed, and keep ambiguity to a minimum. Very often, these transmissions are not human-readable at all. That's why the key element that distinguishes data scraping from regular parsing is that the output being scraped was intended for display to an end-user.

Email Extractor

A tool which helps you to extract the email ids from any reliable sources automatically that is called a email extractor. It basically services the function of collecting business contacts from various web pages, HTML files, text files or any other format without duplicates email ids.

Screen scrapping

Screen scraping referred to the practice of reading text information from a computer display terminal's screen and collecting visual data from a source, instead of parsing data as in web scraping.

Data Mining Services

Data Mining Services is the process of extracting patterns from information. Datamining is becoming an increasingly important tool to transform the data into information. Any format including MS excels, CSV, HTML and many such formats according to your requirements.

Web spider

A Web spider is a computer program that browses the World Wide Web in a methodical, automated manner or in an orderly fashion. Many sites, in particular search engines, use spidering as a means of providing up-to-date data.

Web Grabber

Web grabber is just a other name of the data scraping or data extraction.

Web Bot

Web Bot is software program that is claimed to be able to predict future events by tracking keywords entered on the Internet. Web bot software is the best program to pull out articles, blog, relevant website content and many such website related data We have worked with many clients for data extracting, data scrapping and data mining they are really happy with our services we provide very quality services and make your work data work very easy and automatic.


Source: http://ezinearticles.com/?How-Web-Data-Extraction-Services-Will-Save-Your-Time-and-Money-by-Automatic-Data-Collection&id=5159023

Thursday, 20 June 2013

Why Web Scraping Software Won't Help


How to get continuous stream of data from these websites without getting stopped? Scraping logic depends upon the HTML sent out by the web server on page requests, if anything changes in the output, its most likely going to break your scraper setup.

If you are running a website which depends upon getting continuous updated data from some websites, it can be dangerous to reply on just a software.

Some of the challenges you should think:

1. Web masters keep changing their websites to be more user friendly and look better, in turn it breaks the delicate scraper data extraction logic.

2. IP address block: If you continuously keep scraping from a website from your office, your IP is going to get blocked by the "security guards" one day.

3. Websites are increasingly using better ways to send data, Ajax, client side web service calls etc. Making it increasingly harder to scrap data off from these websites. Unless you are an expert in programing, you will not be able to get the data out.

4. Think of a situation, where your newly setup website has started flourishing and suddenly the dream data feed that you used to get stops. In today's society of abundant resources, your users will switch to a service which is still serving them fresh data.

Getting over these challenges

Let experts help you, people who have been in this business for a long time and have been serving clients day in and out. They run their own servers which are there just to do one job, extract data. IP blocking is no issue for them as they can switch servers in minutes and get the scraping exercise back on track. Try this service and you will see what I mean here.


Source: http://ezinearticles.com/?Why-Web-Scraping-Software-Wont-Help&id=4550594

Tuesday, 18 June 2013

Understanding Data Mining

Well begun is half done. We can say that the invention of Internet is the greatest invention of the century which allows for quick information retrieval. It also has negative aspects, as it is an open forum therefore differentiating facts from fiction seems tough. It is the objective of every researcher to know how to perform mining of data on the Internet for accuracy of data. There are a number of search engines that provide powerful search results.

Knowing File Extensions in Data Mining

For mining data the first thing is important to know file extensions. Sites ending with dot-com are either commercial or sales sites. Since sales is involved there is a possibility that the collected information is inaccurate. Sites ending with dot-gov are of government departments, and these sites are reviewed by professionals. Sites ending with dot-org are generally for non-profit organizations. There is a possibility that the information is not accurate. Sites ending with dot-edu are of educational institutions, where the information is sourced by professionals. If you do not have an understanding you may take help of professional data mining services.

Knowing Search Engine Limitations for Data Mining

Second step is to understand when performing data mining is that majority search engines have filtering, file extension, or parameter. These are restrictions to be typed after your search term, for example: if you key in "marketing" and click "search," every site will be listed from dot-com sites having the term "marketing" on its website. If you key in "marketing site.gov," (without the quotation marks) only government department sites will be listed. If you key in "marketing site:.org" only non-profit organizations in marketing will be listed. However, if you key in "marketing site:.edu" only educational sites in marketing will be displayed. Depending on the kind of data that you want to mine after your search term you will have to enter "site.xxx", where xxx will being replaced by.com,.gov,.org or.edu.

Advanced Parameters in Data Mining

When performing data mining it is crucial to understand far beyond file extension that it is even possible to search particular terms, for example: if you are data mining for structural engineer's association of California and you key in "association of California" without quotation marks the search engine will display hundreds of sites having "association" and "California" in their search keywords. If you key in "association of California" with quotation marks, the search engine will display only sites having exactly the phrase "association of California" within the text. If you type in "association of California" site:.com, the search engine will display only sites having "association of California" in the text, from only business organizations.

If you find it difficult it is better to outsource data mining to companies like Online Web Research Services



Source: http://ezinearticles.com/?Understanding-Data-Mining&id=5608012

Friday, 14 June 2013

One of the Main Differences Between Statistical Analysis and Data Mining


Two methods of analyzing data that are common in both academic and commercial fields are statistical analysis and data mining. While statistical analysis has a long scientific history, data mining is a more recent method of data analysis that has arisen from Computer Science. In this article I want to give an introduction to these methods and outline what I believe is one of the main differences between the two fields of analysis.

Statistical analysis commonly involves an analyst formulating a hypothesis and then testing the validity of this hypothesis by running statistical tests on data that may have been collected for the purpose. For example, if an analyst was studying the relationship between income level and the ability to get a loan, the analyst may hypothesis that there will be a correlation between income level and the amount of credit someone may qualify for.

The analyst could then test this hypothesis with the use of a data set that contains a number of people along with their income levels and the credit available to them. A test could be run that indicates for example that there may be a high degree of confidence that there is indeed a correlation between income and available credit. The main point here is that the analyst has formulated a hypothesis and then used a statistical test along with a data set to provide evidence in support or against that hypothesis.

Data mining is another area of data analysis that has arisen more recently from computer science that has a number of differences to traditional statistical analysis. Firstly, many data mining techniques are designed to be applied to very large data sets, while statistical analysis techniques are often designed to form evidence in support or against a hypothesis from a more limited set of data.

Probably the mist significant difference here, however, is that data mining techniques are not used so much to form confidence in a hypothesis, but rather extract unknown relationships may be present in the data set. This is probably best illustrated with an example. Rather than in the above case where a statistician may form a hypothesis between income levels and an applicants ability to get a loan, in data mining, there is not typically an initial hypothesis. A data mining analyst may have a large data set on loans that have been given to people along with demographic information of these people such as their income level, their age, any existing debts they have and if they have ever defaulted on a loan before.

A data mining technique may then search through this large data set and extract a previously unknown relationship between income levels, peoples existing debt and their ability to get a loan.

While there are quite a few differences between statistical analysis and data mining, I believe this difference is at the heart of the issue. A lot of statistical analysis is about analyzing data to either form confidence for or against a stated hypothesis while data mining is often more about applying an algorithm to a data set to extract previously unforeseen relationships.


Source: http://ezinearticles.com/?One-of-the-Main-Differences-Between-Statistical-Analysis-and-Data-Mining&id=4578250

Thursday, 13 June 2013

Basics of Online Web Research, Web Mining & Data Extraction Services

The evolution of the World Wide Web and Search engines has brought the abundant and ever growing pile of data and information on our finger tips. It has now become a popular and important resource for doing information research and analysis.

Today, Web research services are becoming more and more complicated. It involves various factors such as business intelligence and web interaction to deliver desired results.

Web Researchers can retrieve web data using search engines (keyword queries) or browsing specific web resources. However, these methods are not effective. Keyword search gives a large chunk of irrelevant data. Since each webpage contains several outbound links it is difficult to extract data by browsing too.

Web mining is classified into web content mining, web usage mining and web structure mining. Content mining focuses on the search and retrieval of information from web. Usage mining extract and analyzes user behavior. Structure mining deals with the structure of hyperlinks.

Web mining services can be divided into three subtasks:

Information Retrieval (IR): The purpose of this subtask is to automatically find all relevant information and filter out irrelevant ones. It uses various Search engines such as Google, Yahoo, MSN, etc and other resources to find the required information.

Generalization: The goal of this subtask is to explore users' interest using data extraction methods such as clustering and association rules. Since web data are dynamic and inaccurate, it is difficult to apply traditional data mining techniques directly on the raw data.

Data Validation (DV): It tries to uncover knowledge from the data provided by former tasks. Researcher can test various models, simulate them and finally validate given web information for consistency.

Should you have any queries regarding Web research or Data mining applications, please feel free to contact us. We would be pleased to answer each of your queries in detail. Find more information at http://www.outsourcingwebresearch.com



Source: http://ezinearticles.com/?Basics-of-Online-Web-Research,-Web-Mining-and-Data-Extraction-Services&id=4511101

Tuesday, 11 June 2013

Data Mining - Critical for Businesses to Tap the Unexplored Market

Knowledge discovery in databases (KDD) is an emerging field and is increasingly gaining importance in today's business. The knowledge discovery process, however, is vast, involving understanding of the business and its requirements, data selection, processing, mining and evaluation or interpretation; it does not have any pre-defined set of rules to go about solving a problem. Among the other stages, the data mining process holds high importance as the task involves identification of new patterns that have not been detected earlier from the dataset. This is relatively a broad concept involving web mining, text mining, online mining etc.

What Data Mining is and what it is not?

The data mining is the process of extracting information, which has been collected, analyzed and prepared, from the dataset and identifying new patterns from that information. At this juncture, it is also important to understand what it is not. The concept is often misunderstood for knowledge gathering, processing, analysis and interpretation/ inference derivation. While these processes are absolutely not data mining, they are very much necessary for its successful implementation.

The 'First-mover Advantage'

One of the major goals of the data mining process is to identify an unknown or rather unexplored segment that had always existed in the business or industry, but was overlooked. The process, when done meticulously using appropriate techniques, could even make way for niche segments providing companies the first-mover advantage. In any industry, the first-mover would bag the maximum benefits and exploit resources besides setting standards for other players to follow. The whole process is thus considered to be a worthy approach to identify unknown segments.

The online knowledge collection and research is the concept involving many complications and, therefore, outsourcing the data mining services often proves viable for large companies that cannot devote time for the task. Outsourcing the web mining services or text mining services would save an organization's productive time which would otherwise be spent in researching.

The data mining algorithms and challenges

Every data mining task follows certain algorithms using statistical methods, cluster analysis or decision tree techniques. However, there is no single universally accepted technique that can be adopted for all. Rather, the process completely depends on the nature of the business, industry and its requirements. Thus, appropriate methods have to be chosen depending upon the business operations.

The whole process is a subset of knowledge discovery process and as such involves different challenges. Analysis and preparation of dataset is very crucial as the well-researched material could assist in extracting only the relevant yet unidentified information useful for the business. Hence, the analysis of the gathered material and preparation of dataset, which also considers industrial standards during the process, would consume more time and labor. Investment is another major challenge in the process as it involves huge cost on deploying professionals with adequate domain knowledge plus knowledge on statistical and technological aspects.

The importance of maintaining a comprehensive database prompted the need for data mining which, in turn, paved way for niche concepts. Though the concept has been present for years now, companies faced with ever growing competition have realized its importance only in the recent years. Besides being relevant, the dataset from where the information is actually extracted also has to be sufficient enough so as to pull out and identify a new dimension. Yet, a standardized approach would result in better understanding and implementation of the newly identified patterns.


Source: http://ezinearticles.com/?Data-Mining---Critical-for-Businesses-to-Tap-the-Unexplored-Market&id=6745886

Saturday, 8 June 2013

Data Extraction Services For Better Outputs in Your Business

Data Extraction can be defined as the process of retrieving data from an unstructured source in order to process it further or store it. It is very useful for large organizations who deal with large amount of data on a daily basis that need to be processed into meaningful information and stored for later use. The data extraction is a systematic way to extract and structure data from scattered and semi-structured electronic documents, as found on the web and in various data warehouses.

In today's highly competitive business world, vital business information such as customer statistics, competitor's operational figures and inter-company sales figures play an important role in making strategic decisions. By signing on this service provider, you will be get access to critivcal data from various sources like websites, databases, images and documents.

It can help you take strategic business decisions that can shape your business' goals. Whether you need customer information, nuggets into your competitor's operations and figure out your organization's performance, it is highly critical to have data at your fingertips as and when you want it. Your company may be crippled with tons of data and it may prove a headache to control and convert the data into useful information. Data extraction services enable you get data quickly and in the right format.

Few areas where Data Extraction can help you are:

    Capturing financial data
    Generating better sales leads
    Conducting market research, survey and analysis
    Conducting product research and analysis
    Track, extract and harvest product pricing data
    Searching for specific job postings
    Duplicating an online database
    Acquiring real estate data
    Processing auction information
    Searching online newspapers for latest pricing information
    Extracting and summarize news stories from online news sources

Outsourcing companies provide custom made data extraction services to the client's requirements. The different types of data extraction services;

    Web extraction
    Database extraction

Outsourcing is the beneficial option for large organizations seeking to manage large information. Outsourcing this services helps businesses in managing their data effectively, which in turn enables business to experience an increase in profits. By outsourcing, you can certainly increase your competitive edge and save costs too!


Source: http://ezinearticles.com/?Data-Extraction-Services-For-Better-Outputs-in-Your-Business&id=2760257

Thursday, 6 June 2013

Data Mining vs Screen-Scraping

Data mining isn't screen-scraping. I know that some people in the room may disagree with that statement, but they're actually two almost completely different concepts.

In a nutshell, you might state it this way: screen-scraping allows you to get information, where data mining allows you to analyze information. That's a pretty big simplification, so I'll elaborate a bit.

The term "screen-scraping" comes from the old mainframe terminal days where people worked on computers with green and black screens containing only text. Screen-scraping was used to extract characters from the screens so that they could be analyzed. Fast-forwarding to the web world of today, screen-scraping now most commonly refers to extracting information from web sites. That is, computer programs can "crawl" or "spider" through web sites, pulling out data. People often do this to build things like comparison shopping engines, archive web pages, or simply download text to a spreadsheet so that it can be filtered and analyzed.

Data mining, on the other hand, is defined by Wikipedia as the "practice of automatically searching large stores of data for patterns." In other words, you already have the data, and you're now analyzing it to learn useful things about it. Data mining often involves lots of complex algorithms based on statistical methods. It has nothing to do with how you got the data in the first place. In data mining you only care about analyzing what's already there.

The difficulty is that people who don't know the term "screen-scraping" will try Googling for anything that resembles it. We include a number of these terms on our web site to help such folks; for example, we created pages entitled Text Data Mining, Automated Data Collection, Web Site Data Extraction, and even Web Site Ripper (I suppose "scraping" is sort of like "ripping"). So it presents a bit of a problem-we don't necessarily want to perpetuate a misconception (i.e., screen-scraping = data mining), but we also have to use terminology that people will actually use.

Todd Wilson is the owner of screen-scraper.com (http://www.screen-scraper.com/), a company which specializes in data extraction from web pages. While not scraping screens Todd is hard at work finishing up a doctoral degree in Instructional Psychology and Technology.


Source: http://ezinearticles.com/?Data-Mining-vs-Screen-Scraping&id=146813

Monday, 3 June 2013

Business Intelligence Data Mining

Data mining can be technically defined as the automated extraction of hidden information from large databases for predictive analysis. In other words, it is the retrieval of useful information from large masses of data, which is also presented in an analyzed form for specific decision-making.

Data mining requires the use of mathematical algorithms and statistical techniques integrated with software tools. The final product is an easy-to-use software package that can be used even by non-mathematicians to effectively analyze the data they have. Data Mining is used in several applications like market research, consumer behavior, direct marketing, bioinformatics, genetics, text analysis, fraud detection, web site personalization, e-commerce, healthcare, customer relationship management, financial services and telecommunications.

Business intelligence data mining is used in market research, industry research, and for competitor analysis. It has applications in major industries like direct marketing, e-commerce, customer relationship management, healthcare, the oil and gas industry, scientific tests, genetics, telecommunications, financial services and utilities. BI uses various technologies like data mining, scorecarding, data warehouses, text mining, decision support systems, executive information systems, management information systems and geographic information systems for analyzing useful information for business decision making.

Business intelligence is a broader arena of decision-making that uses data mining as one of the tools. In fact, the use of data mining in BI makes the data more relevant in application. There are several kinds of data mining: text mining, web mining, social networks data mining, relational databases, pictorial data mining, audio data mining and video data mining, that are all used in business intelligence applications.

Some data mining tools used in BI are: decision trees, information gain, probability, probability density functions, Gaussians, maximum likelihood estimation, Gaussian Baves classification, cross-validation, neural networks, instance-based learning /case-based/ memory-based/non-parametric, regression algorithms, Bayesian networks, Gaussian mixture models, K-means and hierarchical clustering, Markov models and so on.


Source: http://ezinearticles.com/?Business-Intelligence-Data-Mining&id=196648